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Flows of water and of the solid particles suspended in them are considered in a one-dimensional approximation and a formulation 
and solution of the problem of erosion and deposition in open channels are given for the case of loose soils. The effects of friction 
in the hydrodynamic equations are represented using the classical approach without invoking the concepts of a hydraulic radius 
and a Ch6zy coefficient. The rate of erosion and deposition are related to the flow parameters, and the effect of erosion and 
deposition on the hydrodynamic flow parameters is demonstrated. A theoretical description of this phenomenon, which is due 
to the removal of solid particles from the surface of the bottom into the flow and their deposition from the flow onto the bottom, 
is given. An example of a numerical calculation of the erosion and deposition in the case of the corresponding flow parameters 
is presented. The relations obtained enable the phenomena of erosion and deposition to be analysed both in the one-dimensional 
and the two-dimensional approximations. © 2005 Elsevier Ltd. All rights reserved. 

The problem of erosion and deposition in the channels of rivers and reservoirs is of great practical 
importance, for example, when analysing erosion and deposition in channels and reservoirs during the 
operation of hydrotechnical installations, which can be the cause of the partial or complete exposure 
of such installations. There are also ecological aspects of this phenomenon associated with rivers 
becoming shallower by the removal of solid particles suspended in the flow (solid particle drain). 

The solution of this problem consists of determining the hydrodynamic characteristics of the flow, 
on the basis of which the rate of removal and deposition (mass transfer) is estimated. This, in turn, 
leads to a change in the hydrodynamic characteristics of the flow. 

Sections of channels are considered which have a slight mean inclination of the bottom, that does 
not usually exceed values of 5 × 10 -4. The change in the absolute vertical coordinate of the free surface 
of the flow is commensurate with the depth of the channel. The modulus of the vertical component of 
the velocity vector is considerably less than the modulus of the velocity vector. The "shallow water" 
theory approximation is used to describe the hydrodynamics of the flow. In the equation of motion, it 
is necessary to give special attention to describing the term associated with the effect of friction. An 
expression associated with the hydraulic radius is often used, which is only defined in the one-dimensional 
case and only in the case of simple forms of the cross-section of channel [1]. Better results are obtained 
using the Ch6zy coefficient [2]. However, in practice, it is determined by natural measurements of the 
hydrodynamic quantities. The means that an investigator is compelled to solve the problem by deter- 
mining the hydrodynamic characteristics experimentally. A second drawback is the attachment of the 
value of the Ch6zy coefficient to a certain narrow range of values of the channel flow velocity. 

Sometimes, the effect of friction is described by a term which takes into account the inclination of 
the free surface of the flow [3, 4]. This approach is valid for a constant value of the flow velocity in time, 
a cross-section area which is constant along the longitudinal coordinate and a number of other conditions. 

Empirical relations or recommendations derived on this basis [5] are used to determine the rate at 
which solid particles are carried out into the flow. No theoretical description of this process has been 
found in the scientific literature. Note that, for the steady-state case, there is an equation for the mass 
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balance of the solid particles moving in the flow disregarding their dimensions [6]. Equations will be 
written for the one-dimensional case which describe the hydrodynamics of the flow in an open channel. 
The term describing the effect of friction on the flow is determined from experiments based on classical 
hydrodynamics. It is shown that the friction depends on the erosion and deposition on the bottom surface. 
The fundamentals of a theory of erosion and deposition in open channels are proposed. 

1. O B J E C T  OF THE I N V E S T I G A T I O N .  BASIC A S S U M P T I O N S  

A mixture of water and suspended solid particles in a section of an open channel length L is considered. 
We introduce a Cartesian system of coordinates. The z axis is directed upwards, the x axis is directed 
along the flow and the y axis completes the system of coordinates. The depth of the flow h = z+ - z_, 
where z_ = z_(x, y) is the absolute vertical coordinate of the bottom surface and z+ = z+(x, y) is the 
absolute vertical coordinate of the flow free surface. 

The flow mean velocity, which is equal to the ratio of the flow rate Q to the cross-section are S, as 
a rule has a value of the order of 1 1 m s- .  The steady rate of deposition of particles in the quiescent 
water (the hydraulic size of the particles is w) does not usually exceed 0.01 m s -1 and can serve for 
estimating the rate of diffusion. In channel flows, the relative volume concentration of particle does 
not usually exceed 2%. Taking this into account, we will adopt the diffusion approximation when treating 
the motion of a two-phase medium in which the velocities of the two-phase flow and of the particles 
are identical. 

It follows from estimates which have been made that the flow density can be assumed to be constant 
and equal to the water density 9. We assume that the solid particles do not interact with one another 
either in the flow of the mixture or on the channel bottom (the approximation of a loose bottom soil). 
A diameter distribution function is specified for particles which are below the bottom surface. 
Furthermore, we will assume that the magnitude of the shear stress on the flow surface is much less 
than on the bottom. 

Usually, in the case of multiphase media, the equations for each phase are written out separately 
and the equations for the mixture as a whole are obtained by summing over the phases. Here, the 
equations will be written out for the mixture as a whole and separately for the solid particles. 

It is assumed that the effects of friction are solely associated with the roughness of the bottom surface 
and the purely turbulent flow conditions. The process in which particles are carried out into the flow 
from the bottom and deposited onto the bottom are treated without taking into account "bottom 
particle" flows in which displacement of the particles along the surface occurs without the particles being 
carried out into the flow. 

2. THE G E N E R A L  F O R M  OF THE F U N D A M E N T A L  E Q U A T I O N S  
OF H Y D R O D Y N A M I C S  

The equation of continuity for a mixture when there are no mass sources and sinks has the form 

OS3__~ + ~xxOQ = 0 (2.1) 

The equation of motion of the mixture in the diffusion approximation will also hold for each phase. 
It is obtained by integrating the one-dimensional equation of "shallow water" theory not over the depth, 
as is usually done, but over the whole cross-section area of the channel S. This is due to the fact that 
the cross-section does not always have a simple form (rectangular, etc.). The first two terms describing 
the acceleration take the form indicated earlier in [7]. The form of the terms describing the effect of 
pressure and the mean inclination of the bottom over the cross-section will differ from the generally 
accepted form. We then represent the equation of motion of the mixture as follows: 

0Q + 0 Q2 ~ Oz si Q 
- -  - -  

S S l 

Here, g is the acceleration due to gravity, "c is the magnitude of the shear stress and l is the wetted 
perimeter. 
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3. D E T E R M I N A T I O N  OF THE M A G N I T U D E  OF T H E  S H E A R  STRESS 

In the classical one-dimensional formulation of the problem within the framework of "shallow water" 
theory, it is impossible to determine the last term on the right-hand side of Eq. (2.2). To identify this, 
we shall extend the limits of the one-dimensional approach. We will apply the natural conditions. 

The mean value of the Reynolds number Re = Vh/v (Vis the mean velocity of the flow with respect 
to the depth and v is the coefficient of kinematic viscosity of water) has a magnitude of the order of 
106 . The expressions for the drag coefficient, taking account of the roughness of the bottom (of the 
mean statistical diameter of the particles db on the bottom), is taken for turbulent conditions in the 
form [8] 

~ .= 0.01375tx(~ + ~-~4e) °'25 (3.1) 

The coefficient a reflects the fact that there are laminar conditions in a small part of the flow (close to 
the channel boundaries). The modulus of the shear stress "c is related to the drag coefficient )~ [9] as 
follows: 

[x.~l = ux = ~, Re , - -  V 2 
P 

where u~ is the modulus of the shear stress velocity. 
In accordance with experimental data, we take the following dependence of the mean velocity over 

the depth on the depth: 

V = Otv hn, ~v = Ql~(z+-z_)nds (3.3) 

S 

The value of n can be determined by processing the natural data or from existing relations (usually, 
0.2 < n < 0.35). 

Finally, substituting expression (3.2) and (3.3) into Eq. (2.2) we obtain the final form of the motion 
equation. 

~Q+ ~-x-s~ QZ + g~--x~(Z+-z-)ds = _g ~_~xdS signQ~,(Re, ~)V2dl 
S S l 

(3.4) 

The system of equations (2.1), (3.4) completely defines the dynamics of the flow in the channel. Note 
that, knowing the values of z+, the cross-section area of the channel S can be found. 

The initial and boundary conditions have the form 

z+(t = O) = ~pz(x), Q(t = 0) = ~po(x); 

R l ( z + , Q , t , x = 0 )  = 0, R2 (z+ ,Q , t , x=L)  = 0 
(3.5) 

In practice, the absolute values of the level of the flow of the mixture can be determined most accurately 
at the ends of the section and the following can therefore be taken as the boundary conditions: 

z+(x = O) = ]tl(t), z+(x = L) = ~t2(t) (3.6) 

The proposed approach, unlike the one-dimensional approach, enables one to find the value of the 
mean velocity V and to obtain more accurate results. 

4. F U N D A M E N T A L S  OF T H E  T H E O R Y  OF T H E  E R O S I O N  AND 
D E P O S I T I O N  OF L O O S E  SOILS ON T H E  B O T T O M  

We shall now consider the processes associated with the deposition and ejection of solid particles. Some 
particles are carried out into the flow from the surface of loose soil and, at the same time, particles can 
be deposited onto the bottom. When the rate of deposition is greater than the rate of ejection, filling 
in occurs. Otherwise, one speaks of erosion. 
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On the basis of natural investigations of the diameter d of all the particles in loose bottom soils and 
in flow participating in mass transfer, we subdivide the particles into three groups. The finest particles, 
which are distributed throughout the whole depth of the flow and are all carried out from the bottom 
surface into the flow, belong to the first group. Natural data determine the maximum diameter dl of 
these particles from the condition [10] 

W l = W ( d l )  = klux, 0-3 -< k1<- 0.4 (4.1) 

The second group consists of coarser particles with a diameter greater than dl but less then d 2. The 
diameter d 2 is determined from the condition 

w 2 = w ( d 2 )  = k 2 u x ,  0 . 9  -< k 2 -< 1.1 (4.2) 

The particles of the second group differ from the particles of the first group solely in that they are not 
distributed throughout the whole of the depth but constitute a layer close to the bottom. The third group 
consists of particles with a diameter which is greater than d2. These particles are not carried out from 
the bottom, and if they occur in the flow, they are instantaneously deposited onto the bottom. 

Since the processes which have been described are intimately associated with the magnitude of the 
diameter of the particles d, it is necessary to use the probability theory and mathematical statistics to 
describe them. Mass transfer in the flow is described by the equation of continuity for the solid particles 
close to the bottom and is determined by the source terms. 

The motion of the mixture is accompanied by the diffusion of solid particles. The particle distribution 
function in the flow G(d) tends to adopt the form of an equilibrium distribution function Gp(d). 
According to the central limit theorem in probability theory, this distribution will be close to a normal 
distribution. The balance equation for the solid phase can be written as 

b(Gpp) V~9(Gpp) pp(G-  Gp) + J+- J -  
b t  + ~ x  = - T ( d )  

(4.3) 

Here pp is the reduced density of the particles, j+ is the rate at which particles are carried out from the 
bottom and j_ is the rate at which particles are deposited from the flow. 

The establishment time of the process will be 

J h d<dl 
G ~ i  ~G(b) w2-w '  - T(d) = tp~(b)db; ~(b) = - - ~ ,  tp = I h2(d) ' h2(d) = hFw2 - w(d)12 

0 [ w 2 - w ' d l < - d < - d  2 l_ w2-wl  J 

where g(b) is the particle probability distribution density in the flow, tp is the establishment time of the 
process for a particle of diameter d and h2(d ) is the depth, measured from the bottom surface onto 
which particles of the second group are raised. 

We will assume that the particles are deposited from the flow onto the bottom instantaneously, which 
is permissible in view of the smallness of he(d). Then 

J_ = 9pz(d-  d2)[G- G(d2)]~(t) (4.4) 

where z(d) is the Heaviside function and 6(t) is the delta function. 
We will now determine the rate j+ at which solid particles are carried out from the bottom. Suppose 

/~ is the change in the vertical coordinate of the bottom surface due to the ejection of particles. The 
probability distribution density of particles on the bottom is equal tof(d). If the thickness of the boundary 
layer is equal to 6(n), the rate of change of the vertical coordinate will be 

d 2 

~h m~n f 
~t - (1 ---p~J [w2 - w({) l f ({ )d{  x 

0 

-~ A -1 

X {1 + ( 1 -  P ) I  z(d*ax- d2)[ 1 - F(d2) ]d---q + ( 1 -  p ) I [ 1 -  G(d2)ld_~. a 1 
o dp o de j ' 

( l  p --. 

0 

(4.5) 
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wherep is the porosity of the soil on the bottom, dp is the mean statistical diameter of the particles on 
the bottom, d~ax is the maximum diameter of the particles on the bottom, A is the increment in the 
vertical coordinate of the bottom due to the deposition of particles of the mixture from the flow, and 
m is the intermittence coefficient, which defines the fraction of the time of the process when large scale 
turbulent vortices are observed which, in the general case, depends on the Reynolds number, Re. 

According to natural observation, rn takes a value close to 0.5. The particle self-riprap phenomenon 
has been taken into account in relation (4.5), the meaning of which lies in the fact that the fraction of 
coarse particles on the bottom can increase with time. We shall differentiate between two forms of 
particle self-riprap: an internal self-riprap which is due to the fact that not all the particles are carried 
out into the flow (coarse particles remain on the bottom where, as time passes, their fraction in the 
distribution function increases) and an external self-riprap which is associated with the fact that, for 
the most part, coarse particles are deposited from the flow onto the bottom, which also leads to an 
increase in the fraction on the bottom. In Eq. (4.5), the first integral in the braces describes the effect 
of an internal self-riprap on the transport of particles and the second integral describes the effect of 
an external self-riprap. After each stage of the transport of particles from the bottom at the depth h, 
in relation (4.5), instead of the distribution function F(d),  it is necessary to take the particle distribution 
function directly on the bottom, which takes into account the possible phenomenon of a self-riprap 

F(d)  + l l ( d )  + 12(d) 
o ( c t )  = 

1 + l l ( d  ) + l z (d  ) 

-h a 
I 

l l ( d )  = ( 1 - p )  f z ( d  - d2) [F(d) - F(d2)]a_ --a, I2(d) = (1 - p ) Jx(d  - d 2 ) [ G ( d )  - G(d2)]a_ -~-a 
a db db 
0 0 

(4.6) 

where Ii(d) are terms which correspond to an internal (i = 1) and external (i = 2) self-riprap and, in 
Eq. (4.5), it is therefore necessary to substitute the derivative 30/3d  instead off(d).  

When account is taken of expression (4.6) and the remarks which have been made, we obtain the 
following equation for determining the coordinate of the bottom surface from relation (4.5) 

- -  = + A S ( t ) ,  
bt 

dm~x H2 
Pp 

A = ~ , ( I _ e ) [ I _ G ( d 2 ) I  f. z ( b - d 2 ) d b J d z { e x p [ - o ~ p ( z - z _ ) ] g b }  
d 2 0 

(4.7) 

where ~p is the true density of the particles and H2 = h2(d2). 
An expression for A is obtained on the basis of numerous experiments, from which it is known that 

the reduced density distribution of the particles in the flow of a mixture has an exponential form with 

pp - exp L-~p(z - z_)J 

Furthermore, the rate of inflow of the mass of particles into the flow, due to them being carried out 
from the bottom, taking into account the particle diameter distribution, is given by 

~p~p(1 - p)[O(d) - O(d2)]~h 
J+ = - [1-exp( -~ph)]O(d2)  O"-t 

(4.8) 

Hence, expressions (4.4) and (4.8) completely define the mass transfer (4.3). In practice, it is necessary 
to substitute the diameter dmax into Eq. (4.3) for the distribution function and an equation in the density 
of particles in the flow is obtained. The left-hand side of equality (4.3) is then differentiated, taking 
into account the equation obtained for the density of the particles, to obtain an equation for the 
distribution function separately. 

For the solution of the mass transfer problem, the initial and boundary conditions will be as follows: 

pp(t = O) = Ro(x), G(t = O) = Go(d, x); pp(X = O) = Rx(t), G(x = O) = Gx(d, t) (4.9) 
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We will now define the stages of the solution of the problem on erosion and deposition in open channels. 
1. The system of equation (2.1), (3.4) is solved and the quantities Q, z÷, S, V, u~ are determined. 
2. The effect of the flow on the erosion and deposition is determined from relations (4.1) and (4.2). 
3. The following are determined when solving the mass transfer equations (4.3) and Eqs (4.5) and 

(4.7): 
(a) the change in the particles density in the flow and their diameter distribution function; 
(b) the diameter distribution function of the particles on the bottom surface on account of their 

ejection and deposition; 
(c) the new coordinates z_ of the bottom surface on account of the erosion and deposition; 
(d) the overall transport of the solid particles by the flow. 

4. The values of S due to the change in z_ (the effect of erosion and deposition on the cross-section 
area of the channel) are determined. 

5. The new mean statistical diameter of the particles @ on the bottom surface is determined. 
As an example, we will now consider a section of a channel of length L = 10000 m in the form of a 

rectangle of  width B = 500 m. At the initial instant of time t = 0 

z_(0,0)  = 0, z_(0, L) = - 2 m  

The initial vertical coordinate of the bottom surface changes monotonically from 0 to -2  m along 
the whole length of the section. We will assume that the mean flow velocity is independent of the depth. 
The initial flow rate is equal to 2500 m 3 s -1. All points of the bottom have the same characteristics 
regarding the maximum diameter of the particles forming the bottom, which is equal to 2.17 mm. The 
true density of the particles is 2650 kg m -3. The diameter distribution function of the particles divided 
by the maximum F(d/dbax) is shown in Fig. 1. 

The changes in the value of z+ with time t for different values ofx/L are shown in Fig. 2, with a step 
size of 0.25. The initial value z+ = 5 m corresponds to x/L = 0: z+ = 3 m - x/L = 1. The remaining 
values of z+ for other x/L are arranged between them. 

The reduced density of the solid particles pp whenx = 0 is taken equal to zero. The calculated values 
of the flow rate Q for x = 0 are given in Fig. 3 since the difference in the value of Q was insignificant 
for different values of x. 
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The calculated values of the change in the vertical coordinate z of the points of the bottom surface 
are shown in Fig. 4. A reduction in the value of z_ corresponds to erosion and an increase to deposition. 
The lower curve corresponds to x/L = 1 and the upper curve to x/L = 0. The curves for other x/L are 
located between these two curves. 

5. C O N C L U S I O N  A N D  R E S U L T S  

1. A method for taking account of friction has been proposed which increases the accuracy with which 
the hydrodynamic characteristics of a flow can be determined. 

2. Equations have been written, on the basis of the diffusion approximation for the one-dimensional 
problem, which describe the processes in open channels. Unlike the classical model, this model enable 
one to determine the longitudinal flow velocity. 

3. Equations have been derived for the mass transfer between particles on the bottom surface and 
particles in the flow of the mixture. The rate at which particles are carried out from the bottom and 
the rate of deposition of particles from the flow onto the bottom have been determined as a function 
of the flow rate, the absolute coordinate of the water level and the absolute coordinate of the bottom 
surface. 

4. The effect of the rate of the erosion and deposition of particles on the statistical characteristics 
of the particles and on the change in the coordinate in the bottom surface has been determined. 

5. A theoretical description of the particle self-riprap phenomenon has been given. 
6. A sequence of solutions of the problem has been presented. 
7. An example of a numerical calculation of the parameters for erosion and deposition has been 

presented. 

This research was carried out at the "Econg-com" Ltd. 
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